This is a simple C++ socket example with a client and echo server. This tutorial is based on
simple server and client chat (linux) written by Hassan M. Yousuf,

| do not pretend bring a long explanation about sockets, you can find a lot of information in
Google. | share a basic example to understand how it works.

Socket workflow

Server Client
| socket (] | | socket () |
recvfrumi]|

Blocks wmtil data
receiwad
Dataireoquest)

| sendtoi) |
Data lreply)
| Sendto () I 4 recviromi)
| claze () | | claze () |

source: http://www.tenouk.com/Module39_files/image008.

png
Server side
/*!
* Simple socket program server.cpp
* Version - 1.0.0
* Based on: Simple chat program (server side).cpp -
http://github.com/hassanyf
*x

* Copyleft (c) 2017 Rodrigo Tufino <rtufino@ups.edu.ec,
r.tufino@alumnos.upm.es>
*/

#include <iostream>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>

using namespace std;

https://github.com/hassanyf/Simple-Server-and-Chat-Program

int main() {

Y INITIALIZING VARIABLES -------------- */
int server, client; // socket file descriptors

int portNum = 2705; // port number

int bufSize = 1024; // buffer size

char buffer[bufSize]; // buffer to transmit

bool isExit = false; // var fo continue infinitly

/* Structure describing an Internet socket address. */
struct sockaddr in server_addr;
socklen t size;

cout << "\n- Starting server..." << endl;

[* ~---mm--- ESTABLISHING SOCKET CONNECTION ---------- */
server = socket(AF INET, SOCK STREAM, 0);

/*

“

The socket() function creates a new socket.

* It takes 3 arguments:

* 1) AF INET: address domain of the socket.

* 2) SOCK STREAM: Type of socket. a stream socket in

* which characters are read in a continuous stream (TCP)
* 3) Third is a protocol argument: should always be 0.
* If the socket call fails, it returns -1.

*/

if (server < 0) {

cout << "Error establishing socket ..." << endl;
exit(-1);

}

cout << "- Socket server has been created..." << endl;
/*

* The variable serv addr is a structure of sockaddr in.

sin family contains a code for the address family.
It should always be set to AF INET.
INADDR ANY contains the IP address of the host. For
server code, this will always be the IP address of
the machine on which the server is running.
htons() converts the port number from host byte order
to a port number in network byte order.

/

server addr.sin family = AF INET;

server_addr.sin addr.s _addr = htons(INADDR ANY);
server _addr.sin port = htons(portNum);

/*

* ¥ X X X ¥ ¥ X

This function is used to set the socket level for socket.
It is used to avoid blind error when reuse the socket.
For more info, see the url.

* * ¥

*

http://stackoverflow.com/questions/5592747/bind-error-while-recreating
-socket
*/

int yes = 1;
if (setsockopt(server, SOL SOCKET, SO REUSEADDR, &yes, sizeof(yes))

= -1) {
perror("setsockopt");
exit(1l);
}
Y BINDING THE SOCKET --------------- */
/*
* The bind() system call binds a socket to an address,
* in this case the address of the current host and port number
* on which the server will run. It takes three arguments,
* the socket file descriptor. The second argument is a pointer
* to a structure of type sockaddr, this must be cast to
* the correct type.
*/

if ((bind(server, (struct sockaddr*) &server addr,
51ze?fiserver addr)))

cout

<< "- Error binding connection, the socket has already been
established..."

<< endl;

?Xit(-l);

JH e LISTENING CALL ------c--cmemmnn- */

size = sizeof(server addr);
cout << "- Looking for clients..." << endl;

The listen system call allows the process to listen
on the socket for connections.

The program will be stay idle here if there are no
incomming connections.

The first argument is the socket file descriptor,
and the second is the size for the number of clients
i.e the number of connections that the server can
handle while the process is handling a particular
connection. The maximum size permitted by most
systems is 5.

¥ X K K X X X X ¥ XN
*

*/
listen(server, 1);
Y A ACCEPT CALL ----------""e-- */

client = accept(server, (struct sockaddr *) &server addr, &size);

* N
*

The accept() system call causes the process to block

until a client connects to the server. Thus, it wakes

up the process when a connection from a client has been
successfully established. It returns a new file descriptor,
and all communication on this connection should be done
using the new file descriptor. The second argument is a
reference pointer to the address of the client on the other
end of the connection, and the third argument is the size
of this structure.

/

if (client < 0)
cout << "- Error on accepting..." << endl;

* K X X X X ¥ ¥ X

string echo;

while (client > 0) {

// Welcome message to client

strcpy(buffer, "\n-> Welcome to echo server...\n");
send(client, buffer, bufSize, 0);

cout << "- Connected with the client, waiting for data..." << endl;
é/ %oop to recive messages from client
0
cout << "\nClient: ";
echo = "";
/*

* A send operation from client is done for each word

* has written on it's terminal line. We need a special
* character to stop transmission and this loop works

* until this char ('*') arrives.

*/

do {

// wait the request from client

recv(client, buffer, bufSize, 0);

cout << buffer << " ";

// verify if client does not close the connection

if (*buffer == '#') {

// exit loop and say goodbye (It's a polite server :D)
isExit = true;

pbuffer = '';
echo = "Goodbye!";
} else if ((*buffer != '#') && (*buffer != '*')) {

// concatenate the echo string to response to the client

echo += buffer;
echo += " ";

}

} while (*buffer != '"*');

// copy the echo string to the buffer
sprintf(buffer, "%s", echo.c str());
// send the message to the client
send(client, buffer, bufSize, 0);

} while (!'isExit);

YA CLOSE CALL ------------- */
cout << "\n\n=> Connection terminated with IP "
<< inet ntoa(server addr.sin addr);
close(client);

cout << "\nGoodbye..." << endl;

exit(1l);

J¥ s CLOSE CALL ------------- */
close(server);
return 0;

Client side
/*!

* Simple socket program client.cpp

* Version - 1.0.0

* Based on: Simple chat program (client side).cpp -
hEtp://github.com/hassanyf

* Copyleft (c) 2017 Rodrigo Tufino <rtufino@ups.edu.ec,
ri}ufino@alumnos.upm.es>
#include <iostream>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <unistd.h>
#include <netdb.h>

using namespace std;

-------------- INITIALIZING VARIABLES -------------- */
int client; // socket file descriptors
int portNum = 2705; // port number (same that server)
int bufsize = 1024; // buffer size

char buffer[bufsize]; // buffer to transmit
char ip[] = "127.0.0.1"; // Server IP
bool isExit = false; // var fo continue infinitly

/* Structure describing an Internet socket address. */
struct sockaddr in server_addr;

cout << "\n- Starting client..." << endl;
/¥ ---eeee--- ESTABLISHING SOCKET CONNECTION ---------- */
client = socket(AF INET, SOCK STREAM, 0);

/*
* The socket() function creates a new socket.

It takes 3 arguments:

1) AF INET: address domain of the socket.

2) SOCK STREAM: Type of socket. a stream socket in
which characters are read in a continuous stream (TCP)
3) Third is a protocol argument: should always be 0.
If the socket call fails, it returns -1.

/

if (client < 0) {

cout << "\n-Error establishing socket..." << endl;
exit(-1);

}

cout << "\n- Socket client has been created..." << endl;

/*
*

* K X X X X ¥

The variable serv _addr is a structure of sockaddr in.
sin family contains a code for the address family.

It should always be set to AF INET.

INADDR ANY contains the IP address of the host. For
server code, this will always be the IP address of
the machine on which the server is running.

htons() converts the port number from host byte order
to a port number in network byte order.

/

server _addr.sin family = AF_INET;
server _addr.sin port = htons(portNum);

* ¥ X X X ¥ ¥ X

/*

* This function converts an Internet address (either IPv4 or IPv6)
* from presentation (textual) to network (binary) format.

* If the comunication is on the same machine, you can comment this
line.

*/

inet pton(AF_INET, ip, &server addr.sin_addr);

YA CONNECTING THE SOCKET ---------- */

if (connect(client, (struct sockaddr *) &server addr,
sizeof(server _addr))

< 0)

cout << "- Connection to the server port number: " << portNum <<
endl;

/*

* The connect function is called by the client to

* establish a connection to the server. It takes

* three arguments, the socket file descriptor, the

* address of the host to which it wants to connect

* (including the port number), and the size of this

* address.

* This function returns 0 on success and -1

* if it fails.

* Note that the client needs to know the port number of

* the server but not its own port number.

*/

cout << "- Awaiting confirmation from the server..." << endl; //line
40

// recive the welcome message from server
recv(client, buffer, bufsize, 0);
cout << buffer << endl;

cout << "- Connection confirmed, you are good to go!" << endl;
cout << "- Enter * to end the message" << endl;
cout << "- Enter # to end the connection\n" << endl;
é/ %oop to send messages to server
0
cout << "Message: ";
/*

* The function 'cin' get an word at time and send it
* to the server. The send operation is call until

* the user write '*',

*/

do {

// read from terminal

cin >> buffer;

// send to the server

send(client, buffer, bufsize, 0);

if (*buffer == '#') {

// exit from the loop
puffer = '';

%sExit = true;

} while (*buffer I= '*');

// wait the response from the server
cout << "Server says: ";

recv(client, buffer, bufsize, 0);
// print the server message

cout << buffer << endl;

} while (!'isExit);

Y A CLOSE CALL ------------- x/
cout << "\nConnection terminated.\n";

/*

* Once the server presses # to end the connection,
* the loop will break and it will close the server
* socket connection and the client connection.

*/

close(client);

return 0;

